[HTML][HTML] Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants

KG Aragam, T Jiang, A Goel, S Kanoni, BN Wolford… - Nature …, 2022 - nature.com
KG Aragam, T Jiang, A Goel, S Kanoni, BN Wolford, DS Atri, EM Weeks, M Wang, G Hindy
Nature genetics, 2022nature.com
The discovery of genetic loci associated with complex diseases has outpaced the
elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide
association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases
among 1,165,690 participants of predominantly European ancestry. We detected 241
associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS
yielded 38 additional new loci. We prioritized likely causal variants using functionally …
Abstract
The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR–Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
nature.com