[PDF][PDF] Acetate is a bioenergetic substrate for human glioblastoma and brain metastases

T Mashimo, K Pichumani, V Vemireddy, KJ Hatanpaa… - Cell, 2014 - cell.com
T Mashimo, K Pichumani, V Vemireddy, KJ Hatanpaa, DK Singh, S Sirasanagandla
Cell, 2014cell.com
Glioblastomas and brain metastases are highly proliferative brain tumors with short survival
times. Previously, using 13 C-NMR analysis of brain tumors resected from patients during
infusion of 13 C-glucose, we demonstrated that there is robust oxidation of glucose in the
citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool.
Here, we show that primary and metastatic mouse orthotopic brain tumors have the capacity
to oxidize [1, 2-13 C] acetate and can do so while simultaneously oxidizing [1, 6-13 C] …
Summary
Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using 13C-NMR analysis of brain tumors resected from patients during infusion of 13C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here, we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-13C]acetate and can do so while simultaneously oxidizing [1,6-13C]glucose. The tumors do not oxidize [U-13C]glutamine. In vivo oxidation of [1,2-13C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together, the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth.
cell.com