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Introduction
First identified in 1935, Clostridium difficile has become a leading 
cause of hospital-acquired infections (1, 2). Of substantial concern 
is the increase in severity and morbidity observed within the last 
decade. Within the US, an estimated 14,000 deaths are attrib-
uted to C. difficile infection (CDI) annually, with associated costs 
between $1 billion and $3 billion (3). Additionally, initial treatment 
options fail in 20%–30% of patients, resulting in disease recur-
rence. These increases in CDI burden have occurred in conjunc-
tion with the emergence of hyperendemic strains (4, 5).

Since the discovery of C. difficile as an etiological agent of 
antibiotic-associated diarrhea, we have come to appreciate the 
importance of changes in the indigenous gut microbes, collec-
tively termed the microbiota, in the development of CDI (6). These 
microbes are estimated to contain 100-fold more genetic potential 
than our own genome. Thus, the microbiota can provide functions 
the host alone cannot supply, such as the breakdown of essential 
nutrients, drug metabolism, immune development, and pathogen 
resistance (7). Recent technological advances have enhanced our 
understanding of the microbiota’s role in the pathogenesis of CDI. 
The presence of a healthy gut microbiota is especially relevant in 
the development of CDI, and future therapeutic strategies will rely 
on a more complete understanding of the role of the microbiota 
in disease prevention. In this Review, we will discuss our current 
knowledge of the role of the microbiota in the pathogenesis of CDI.

CDI pathogenesis: spore exposure and  
disease development
An understanding of the pathogenesis of CDI is crucial in disease 
treatment and prevention (Figure 1). C. difficile is an obligate anaer-
obe, acquired by the ingestion of spores via the fecal-oral route. 
These spores can survive even in harsh environmental conditions 
(8). Because C. difficile spores are also resistant to alcohol-based 
cleaners, spores are especially prevalent in hospital environments 
and have been detected months after initial exposure (9, 10). Infec-

tion with a toxigenic strain of C. difficile results in a range of clinical 
signs and symptoms, from diarrhea and cramping in mild cases to 
the development of pseudomembranous colitis and even death in 
severe disease. Although most cases of CDI are health care–related,  
a percentage of cases occur in the community and appear to be 
unrelated to antibiotic use or prior health care exposure (Figure 1 
and ref. 11). A recent molecular epidemiological study by Eyre et al. 
that used whole-genome sequencing to track exposure and trans-
mission of C. difficile concluded that one-third of CDI cases were 
not associated with the hospital (12). Additionally, only one-third 
of cases were genetically related to each other, suggesting an alter-
native source of C. difficile exposure. C. difficile spores have been 
detected in various environmental sources, including domesticat-
ed animals, water sources, and soil (13). Another potential reservoir 
of C. difficile resides in the infant population, in which colonization 
is estimated to occur in up to 45% of individuals (14, 15). The infant 
microbiome is distinct from adults’, and differences in the microbi-
ome may be important in both colonization and disease resistance 
(16, 17). Although high rates of C. difficile colonization are observed 
in infants, they rarely develop disease. It has been postulated that 
infants may lack the receptor necessary for disease development 
(18) or that compounds in human breast milk, such as maternal 
IgA, may prevent toxin binding (19). Future studies analyzing dif-
ferences in the colonized infant microbiome may provide useful 
information about specific microbes that are protective against  
C. difficile colonization and infection.

Once ingested, spores must germinate and grow into veg-
etative cells that colonize the gastrointestinal tract. Exposure to 
spores does not always translate into colonization, as the gastroin-
testinal environment must be favorable for these events to occur. 
In vitro studies indicate that germination and outgrowth into the 
vegetative form depends on the presence of specific primary bile 
acids, such as taurocholate (20, 21). Conversely, other second-
ary bile acids, such as chenodeoxycholate, inhibit the germina-
tion of C. difficile spores (22). Microbes within the gastrointestinal 
tract play a key role in the metabolism of bile acids (23), and it is 
hypothesized that the modulation of the microbiota community 
can impact metabolite availability. Giel et al. determined that 
cecal extracts from antibiotic-treated mice contained elevated 
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although compositional changes may be dependent on the antibi-
otic used as well as the underlying microbiota community of the 
individual (34, 35). Reconstitution of the microbial diversity does 
occur following cessation of antibiotic use, but can also result 
in an altered community structure. Dethlefsen et al. found that 
although recovery began within weeks of ciprofloxacin cessation, 
the new community did not necessarily include all community 
members observed before antibiotic use (36). The classes of anti-
biotics associated with development of CDI include clindamycin, 
cephalosporins, and penicillins (37).

Increasing age, another known risk factor for development of 
CDI, has also been observed to impact the structure of the micro-
biome. The human gut microbiome undergoes extreme changes 
throughout life, and it is not surprising that shifts in the microbial 
composition have been observed in elderly people (38, 39). While 
the gut microbiome of healthy adults appears relatively stable over 
time, the gut microbiome of the elderly has been observed to be 
in flux and less diverse. Microbiota studies in elderly cohorts have 
observed a decrease in protective species, such as Bifidobacteria 
and some Firmicutes members, as well as an increase in Bacte-
roidetes and more detrimental species, such as Proteobacteria (38, 
40). These changes appear to partially accompany degradation 
of the immune system in older age, termed immunosenescence. 
Considering these observations, it is not surprising that the rate 
of CDI is higher for people ages 65 and over and accounts for the 
majority of diarrheal cases in long-term living facilities (41–43). 
While it is possible that age is an independent risk factor for CDI, 
advancing age is also associated with increased antibiotic use, 
more frequent hospital visits, and the development of illnesses in 
general, all of which impact C. difficile susceptibility.

Other risk factors associated with the development of CDI 
also have the potential to disrupt the microbiota (Figure 2). The 
use of proton pump inhibitors (PPIs), particularly in conjunction 
with antibiotics, has been correlated with higher CDI incidence in 
some studies (44, 45). It is hypothesized that PPIs, which gener-
ally increase the pH of the stomach, may affect other gastrointes-
tinal sites and are thus capable of modulating the microbiota (46). 
Indeed, in vitro studies have shown that PPIs can affect the growth 
of Lactobacillus, a common resident of the mouth and gut (47).

levels of bile salts and promoted spore germination, while cecal 
extracts from untreated mice did not (24). Similarly, Theriot et al. 
observed significant shifts in the metabolome of antibiotic-treated 
mice that correlated to changes in the microbial community struc-
ture (25). Both human and in vivo mouse studies have revealed the 
importance of bile acids in C. difficile germination and continue to 
enhance our knowledge about spore germination (25–27).

Once colonized, C. difficile can lead to toxin-mediated inflam-
mation and disease. C. difficile produces 2 major toxins respon-
sible for disease, the large clostridial toxins A and B (TcdA and 
TcdB). These toxins, produced during the stationary phase of 
vegetative growth, are largely responsible for the damage to the 
mucosal epithelium and induction of an inflammatory response 
(28). Another toxin, the C. difficile binary toxin (CDT), has been 
observed to disrupt the actin cytoskeleton, and some studies sug-
gest its presence may increase strain virulence (29, 30); however, 
its presence does not always correlate with disease severity (31). 
The dynamic life cycle of C. difficile is complex, and multiple 
host factors may be involved at each step (Figure 2). Since spore 
exposure and C. difficile colonization does not necessarily result 
in clinical disease, the gastrointestinal microbial community and 
the host may provide an important role in disease development 
throughout the life cycle of C. difficile.

Disruption of the microbiome  
and CDI risk factors
At the core of CDI pathogenesis is disruption of the microbiota 
(Figure 2). A healthy gut microbiota is necessary for protection 
against pathogen colonization, termed colonization resistance 
(32). An undisrupted microbiota is capable of resisting coloniza-
tion by pathogens, and multiple mechanisms have been suggest-
ed for why disruption of the microbiota leads to loss of coloniza-
tion resistance, including competition for nutrients, ecological 
competition, and niche exclusion (33). While many risk factors 
associated with CDI can result in disruption of the microbiota, 
the most commonly associated factor is antibiotic use. Both 
short-term and long-term changes have been observed in the 
gut microbiota following antibiotic use. Decreases in the gut 
microbiota diversity are detectable within days of antibiotic use, 

Figure 1. CDI pathogenesis. Development of dis-
ease is dependent on different stages of the  
C. difficile life cycle. Initial spore exposure from 
various sources does not necessarily result in dis-
ease, particularly in a healthy individual. A healthy, 
diverse microbiota is capable of interfering with 
C. difficile spore germination and vegetative 
growth. However, if the metabolic and microbial 
environment of the gut has been perturbed, spore 
germination, vegetative outgrowth, and toxin 
production will occur. Epithelial damage, inflam-
mation, and clinically overt disease will result from 
toxin production. Sporulation of C. difficile, release 
of spores into the environment, and transmission 
to new hosts perpetuates the infectious cycle.
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in disease outcome. The type of gut community can potentially 
affect the resident mucosal IgA repertoire (55), and a reduction 
in IgA-producing cells has been observed in colonic biopsies of 
patients with recurrent disease (56). Various microbes have also 
been observed to impact subsets of T cells, such as the induction of 
Tregs by Clostridium species (57) and Th17 cell differentiation by 
segmented filamentous bacteria (58). Modulation of these micro-
bial populations, such as after antibiotics, is likely to influence 
pathogen colonization. Russell et al. observed that vancomycin 
treatment in mice resulted in a decreased abundance of Bacteroi-
des species in the gut, which was correlated with a decreased abun-
dance of colonic Tregs (59). It is likely that host factors, modulated 
by antibiotics or not, affect disease outcome.

The Human Microbiome Project revealed the extent of variation 
within the “healthy” or “normal” gut microbiota (60). These obser-
vations have markedly fine-tuned our definition of dysbiosis within 
the gut microbiota and continue to complicate the causal role of the 
microbiome in disease development. Moving forward, we hope to 
answer more mechanistic questions about the risk factors correlated 
with disruption of the microbiota and the development of CDI.

Patients suffering from other gastrointestinal disease may 
also be more likely to acquire C. difficile. Inflammatory bowel dis-
ease (IBD) has been linked to more severe disease outcome and is 
increasingly found to be a risk factor for CDI (48, 49). A decreased 
diversity of Firmicutes and Bacteroidetes has been observed in the 
microbiota of IBD patients (50). Additionally, the microbiota of 
patients with IBD has been associated with the presence of multi-
ple potentially pathogenic bacteria, mainly within the Proteobac-
teria phylum (51, 52). However, how these communities impact 
susceptibility to C. difficile itself appears complex.

The host immune response also has the capability to modulate 
the microbiota. The observation that IBD can aggravate disease 
outcome of CDI suggests that inflammation may contribute to the 
development of CDI. Inflammatory products, such as the antimi-
crobial peptides lipocalin-2 and calprotectin, limit the availabil-
ity of nutrients in the gut environment, potentially impacting the 
growth of surrounding microbes (53, 54). These changes may pro-
vide a more amenable environment for C. difficile colonization and 
subsequent CDI. In addition to inflammation-driven microbiome 
changes, other host-driven immune responses may be involved 

Figure 2. Proposed mechanisms of the microbiota on pathogen resistance and the host during CDI. (A) Both microbial and host factors can inhibit 
germination and growth of C. difficile. A healthy microbiota is capable of consuming both microbial and host-generated metabolites, limiting the growth 
of C. difficile. Cross-talk between the microbiota and the host immune system results in a regulated immune response. Furthermore, the microbiota 
can stimulate production of antimicrobial peptides and secretory IgA (sIgA) that can maintain the composition of the microbiota. (B) Disruption of the 
microbiota, due to factors such as antibiotic use, drugs, diet, or inflammation, can lead to the development of CDI. A dysbiotic microbiota can result in 
the loss of colonization resistance due to changes in the structural and/or metabolic environment. The loss of specific community members potentially 
affects the levels of microbial and host-generated metabolites, resulting in a different functional state that promotes spore germination and vegetative 
outgrowth. A dysbiotic microbiota may also result in an imbalanced immune response through the loss of immune regulation and a proinflammatory 
state, both of which may affect disease development. Toxin production by vegetative C. difficile can stimulate the production of inflammatory cytokines, 
neutrophils, and antitoxin antibodies.
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tes) (61). Healthy adults were also more 
likely to have more Bifidobacteria and 
Bacteroides compared with either elder-
ly population. More recent studies using 
high-throughput sequencing of the 16S 
rRNA gene have provided a more in-
depth look at the community structure 
in C. difficile–positive people (62–64). 
In a cohort of elderly patients, Rea et al. 
observed that patients with active CDI 
harbored a less diverse gut microbiota 
compared with their healthy counter-
parts (63). Increases in Lactobacillaceae 
and Enterobacteriaceae, but decreases 
in Enterococcaceae, were observed in 
patients positive for C. difficile. Similar 
results have been reported in studies 
comparing healthy adults with both 
CDI and non-CDI patients with diar-
rhea (64, 65). Compared with healthy 
adults, both groups had significantly 
less diverse communities, particularly 
a less diverse Firmicutes population. 
Lachnospiraceae, Ruminococcaceae, 
and Bacteroidaceae families dominated 
the communities observed in healthy 
people. Interestingly, non-CDI and CDI 
patients with active diarrhea had strik-
ingly similar communities, suggesting 
that diarrhea or inflammation itself may 
be correlated to a particular microbiota 
community. Furthermore, most CDI 
samples have been collected through-
out antibiotic use, which may simplify 
the community structure observed. 
While results from different studies are 
concordant, the interindividual differ-

ences in the gut microbiota across the studies are apparent. Both 
host factors and environmental influences on the gut microbiota 
and disease itself complicate the identification of specific micro-
bial markers responsible for disease protection.

Similar general observations have been made in murine mod-
els, in which environmental and genetic variances can be more 
controlled. As in humans, antibiotic administration decreases 
the diversity of the gut microbiota in mice, rendering them more 
susceptible to multiple enteric diseases, including CDI. Lawley et 
al. observed that a reduced microbial diversity in the mouse gut, 
dominated by Enterococci and Proteobacteria, following clindamy-
cin treatment induced disease and shedding of contagious spores 
(66). Another clindamycin-based model of CDI in mice reported 
similar decreases in Enterobacteriaceae members, as well as dif-
ferences in the recovery of the communities with and without 
CDI (67). Reeves et al. found that susceptible mice were domi-
nated by Lactobacillaceae and Enterobacteriaceae families before 
infection following treatment with cefoperazone, clindamycin, 
or a multi-antibiotic cocktail (68). Conversely, Lachnospiraceae 
members dominated animals that remained resistant to CDI. A 

The microbiota mediates colonization resistance 
against C. difficile
While the general importance of the gut microbiota in CDI devel-
opment is well established, the exact microbes responsible for 
protection or susceptibility remain elusive (Table 1). The lack of 
prospective human samples before CDI has complicated the iden-
tification of microbiome signatures that correlate with protection. 
Several cross-sectional studies have compared samples from CDI 
patients with samples from both healthy and non-CDI patients 
with diarrhea. Infants represent an interesting population to 
study, as most infants can be colonized but do not develop disease. 
Rousseau et al. observed that C. difficile colonization in infants was 
accompanied by the presence of Ruminococcus and Klebsiella spe-
cies, while Bifidobacterium appeared protective against coloniza-
tion (17). Several studies have also compared samples from elderly 
populations, which are more susceptible. Using nonsequencing 
methods, Hopkins et al. observed that elderly patients with CDI 
had higher counts of Enterobacteriaceae (Proteobacteria), Entero-
coccus, and Lactobacillus (both Firmicutes), whereas healthy elder-
ly patients harbored more diverse Bacteroides strains (Bacteroide-

Table 1. Summary of observed protective microbial taxa (negatively correlated to C. difficile 
colonization) and susceptible microbial taxa (positively correlated to C. difficile colonization) 
in human studies investigating changes in the microbiota community and CDI

Study cohort Observed correlation to CDI
Protective: negatively correlated  
to C. difficile colonization

Susceptible: positively correlated  
to C. difficile colonization

Infants Bifidobacterium longum (17) Ruminococcus gnavus (17)
Klebsiella pneumonia (17)

Elderly Bacteroides spp. (61, 62) Lactobacilli (61)
Prevotella spp. (61, 63) Aerococcaceae (61)
Bifidobacterium spp. (61) Enterobacteria (61)
Enterococcaceae (63) Enterococcal gr. (61)
Leuconostocaceae (63) Clostridiales:

  Clostridium spp. (61, 63)
Adults (variable age) Ruminococcaceae (64, 65) Enterobacteriaceae (64, 65)

Lachnospiraceae (64, 65) Enterococcus (64, 65)
Bacteroides spp. (65) Lactobacillus (64)
Porphyromonadaceae (65) Erysipelotrichaceae (65)
Bifidobacterium spp. (98)
Methanobrevibacter spp. (98)

Fecal microbiota transplantation Bacteroides spp. (27, 74–77, 80, 94) Lactobacillus spp. (75, 77, 80)
patients Parabacteroides spp. (77) Streptococcaceae (75, 78)

Alistipes (77) Enterobacteriaceae:
Ruminococcaceae (75, 77, 78)   Enterobacter aerogenes (76, 77, 80)
Clostridium cluster IV (76, 80)   Klebsiella spp. (76, 78, 80)
Clostridium cluster XIVa (64, 76):   Proteus spp. (80)
  Faecalibacterium prausnitzii Veillonella (27, 75, 77, 80)
  Roseburia intestinalis Enterococcus spp. (78, 80)
  Butyrivibrio crossotus Salmonella spp. (77)
  Eubacterium rectale (80) Sutterella spp. (80)
Lachnospiraceae (77, 78) Verrucomicrobia (27)
Peptostreptococcaceae (78)
Verrucomicrobiaceae (77)
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od, fecal microbiota transplantation (FMT). Use of FMT, or fecal 
bacteriotherapy, has become a popular, highly effective treatment 
method for recurrent CDI. The success rate of FMT is up to 92% in 
multiply recurrent CDI patients, depending on the protocol used 
(73). It is presumed that FMT is capable of restoring the microbiota 
and colonization resistance. However, as with the identification 
of which specific microbes may indicate susceptibility to CDI, the 
microbes responsible for restoring colonization resistance have not 
been specifically identified. Earlier studies using either culture-
based or PCR-based methods have reported the recovery of Bac-
teroides species and detection of more Firmicutes in culture, only 
after the FMT procedure, along with successful clinical recovery 
(74, 75). Recent studies using 16S rRNA surveys have observed that 
after FMT, diversity of the gut microbiota increases and resembles 
the donor’s (76–78). Recovery of both Firmicutes and Bacteroides 
has been observed. Additionally, the level of Proteobacteria, gener-
ally found at high levels within patients with active CDI, decreases 
after FMT. Interestingly, the dominant donor microbes classified 
at either at the genus level or the operational taxonomic unit level 
are observed to be prevalent within the recipient for only days fol-
lowing FMT (77, 79). The microbes that are found to be dominant 
within recipients in the long term appear to be recipient-specific, 
even if the community is more similar to the donor’s than before 
FMT. These observations suggest that direct colonization by the 
donor’s microbes is not necessarily what accounts for recovery of 
the microbiota community following FMT.

As with the identification of communities that render an indi-
vidual more susceptible to C. difficile during initial infection, the 
functional state of the environment may be more telling than 
the structure. Indeed, human microbiome studies of CDI have 
observed a decrease in butyrate-producing microbial taxa and 
have postulated that the abundance of microbial by-products, 
such as short-chain fatty acids, may be indicative of susceptibility 
to CDI (64, 80, 81). A recent study by Weingarden et al. observed 
high concentrations of primary bile acids in patients with recur-
rent CDI (27). Following FMT, the concentration of secondary 
bile acids, undetected in pre-FMT samples, was increased and 
was found at a relative abundance close to that of healthy donors. 
These results are in agreement with the in vitro and in vivo mouse 
studies that have previously observed that secondary bile acids, 
such as lithocholic or deoxycholic acid, inhibit C. difficile growth 
(20, 25). Although the bacterial community is responsible for pro-
ducing the metabolic environment, it is possible that several types 
of bacterial communities with similar functions may be capable of 
the same metabolic outcome, and that structure alone may not be 
enough to determine recurrence risk (82).

C. difficile: future therapeutics  
and research directions
In addition to standard therapy or FMT, other treatment meth-
ods for CDI have been explored. Ideally, therapy would be effec-
tive against C. difficile but fail to globally affect the indigenous gut 
microbiota. Antibiotics other than vancomycin or metronidazole, 
such as fidaxomicin, tigecycline, and rifampicin, have been used to 
treat severe or recurrent CDI (83, 84). Fidaxomicin was also shown 
to exert little effect on Bacteroides counts, which may be advanta-
geous in preserving colonization resistance (85). Tigecycline has 

follow-up study based on these observations observed that mice 
colonized by Lachnospiraceae isolates, but not those colonized by  
E. coli isolates, exhibited decreased C. difficile colonization and 
less severe disease (69). Despite differences at lower taxonomic 
levels in the gut microbiota between humans and mice, murine 
models have provided a more testable way of identifying compo-
nents protective in CDI development.

One of the difficulties that have hindered the identification of 
the specific community members that confer colonization resis-
tance is the inherent interindividual variability of the microbiota 
observed in the human population. Furthermore, the identification 
of the same type of microbe does not guarantee that the microbe 
will have an identical genetic function, nor does the identification 
of different microbes exclude the possibility of similar functions 
within a community. Instead, recent studies have proposed that 
the metabolic, or functional, environment may be more indicative 
of susceptible states compared with community structure. A recent 
study by Theriot et al. suggests that antibiotic-induced changes 
that render mice susceptible to C. difficile are better reflected in 
terms of metabolic changes rather than changes in the microbial 
community composition (25). Although antibiotic-treated mice 
eventually recovered colonization resistance, their community 
composition was altered compared with their preantibiotic com-
munity, suggesting that functional changes rather than community 
changes are important in maintaining resistance to CDI. Further 
studies investigating how different communities may provide simi-
lar functions will be necessary to elucidate the structure-function 
relationship of the microbiome during infection.

Recurrent CDI: incomplete recovery  
of the microbiota
A major concern in CDI treatment is recurrence of disease follow-
ing a seemingly successful response to standard therapy consisting 
of antibiotics known to suppress growth of C. difficile, metronidazole 
and/or vancomycin. Recurrence is estimated to occur in 20%–30% 
of CDI patients; after each incidence, the chance of recurrence 
increases (70). Although it is unknown why recurrence occurs in 
some patients and not others, risk factors for recurrent CDI include 
the use of non-CDI antibiotics following an initial episode, as well 
as increased age and disease severity (71). It is hypothesized that 
antibiotic treatment interferes with the ability of the gut microbio-
ta to recover fully and reestablish colonization resistance in some 
individuals. Alternatively, recurrence could reflect failure of the 
host to mount a protective immune response against C. difficile.

Few studies have investigated structural signatures in the 
microbiome that potentially lead to recurrence. Most human CDI 
studies have not included a longitudinal aspect to their studies 
or have not distinguished patients with multiply recurrent CDI. 
Chang et al. observed that the microbiota community was less 
diverse in recurrent patients than in those with a single case of CDI, 
suggesting that recurrence could be predicted on the basis of the 
microbiota community present during infection (72). While some 
studies comparing non-CDI and CDI samples have included sec-
ondary recurrent samples in their analysis, none were able to iden-
tify particular aspects unique to patients with recurrent CDI (63).

Interestingly, much of our knowledge about the microbiota 
during recurrent CDI comes from an alternative treatment meth-
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been observed to inhibit toxin production and growth in mice and 
has been used to treat severe disease in humans (86, 87). However, 
even antibiotics that have intrinsic capability against C. difficile 
are able to change the microbiota, potentially resulting in a loss of 
colonization resistance (88). The future of CDI treatment will likely 
include nonantibiotic therapeutic approaches against CDI, which 
are advantageous since they may be less likely to perturb the micro-
biota in a detrimental manner. One option is to treat the primary 
cause of disease development in CDI, toxin activity by toxins A and 
B. Serum IgG antibodies against toxins A and B have been corre-
lated with protection in human studies (89, 90). Both passive and 
active immunization strategies against toxins have been explored 
as potential methods to treat C. difficile (91). Drugs that bind toxin 
in vitro, such as tolevamer, have also been used in human trials, 
but with limited success (92). Although antitoxin therapies may 
prevent the effects of toxin and disease development, they do not 
prevent C. difficile colonization or potential spore transmission.

Like FMT, therapies involving live microorganisms have great 
promise in CDI treatment and prevention. Synthetic mixes of bac-
teria have been suggested as potential biotherapeutic approaches 
to treating CDI as an alternative to fecal transplantation directly 
from a donor. Although donors are generally screened for known 
pathogens before FMT, there is still a risk of transmission of 
unknown pathogens or unknown risks associated with the micro-
biota. A synthetic mix provides control over many safety issues 
compared with direct fecal matter, such as reducing the potential 
risk of pathogen transmission and providing more reproducible 
control over the types of bacteria contained in the mixture. Lawley 
et al. were able to identify a population of 6 different bacteria that 
were efficient at clearing CDI in mice (93). In humans, Petrof et al. 
reported successful treatment of recurrent CDI in 2 patients with 
a community consisting of 33 isolates from a healthy donor (94). 
Furthermore, if the functional aspects rather than the community 
itself can lead to colonization resistance, formulation of an effec-
tive biotherapeutic option may include organisms that are capable 
of providing a metabolic environment that promotes the growth 
of existing healthy microbes, such as Bacteroides or Firmicutes, 
rather than fully replacing the community favorable to C. difficile. 
These data have generated great interest in creating commercial 
biotherapeutics to replace FMT, potentially leading to the devel-

opment of prebiotics or prescribed diets instead of bacterial com-
munities to enhance an environment resistant to C. difficile out-
growth and/or colonization.

The observation that asymptomatically colonized patients 
have a reduced risk of developing CDI has prompted research into 
using nontoxigenic strains as preventative therapy against C. dif-
ficile (95). Recently, Nagaro et al. observed that hamsters infected 
with nontoxigenic strains were protected from infection with the 
hyperendemic BI/NAP1/027 strain, which is usually 100% fatal 
in hamsters (96). Nontoxigenic strains have also been used safely 
in studies of volunteer patients in prevention of recurrent C. dif-
ficile (97). Both the generation of a protective immune response by 
the host and competitive niche theories have been hypothesized 
to explain these results. However, the potential for gene transfer 
of virulence factors and antibiotic resistance among nontoxigenic 
and toxigenic strains is a concern.

Conclusion
Although a basic picture of CDI pathogenesis is known, a better 
understanding of the microbiota’s role in disease prevention is 
necessary. The role of the gut microbiota is integral throughout the 
life cycle of C. difficile from spore transmission, germination, and 
growth, into disease development. Although our understanding 
about the complexity of disease development and transmission 
has improved in recent decades, we still lack knowledge on which 
components are crucial points of interruption. The development 
of future therapeutics to treat disease and minimize transmission 
depends on expanding our current knowledge.
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